Статья «Анализ структуры информационной системы для пространственной навигации» в научном журнале
Дорогие авторы статей! Журнал временно закрыт из-за экономической нецелесообразности! Сайт остается работать. Все предыдущее выпуски находятся в разделе архив выпусков. Все свои обязательства журнал на протяжении более 10 лет исполнял в полном объеме! В случае возобновления работы мы обязательно сообщим всем авторам письмом на электронные почты и на сайте напишем объявление о продолжении работы журнала! Спасибо за понимание!
«Образование и наука в России и за рубежом»
научно-образовательное издание для преподавателей и аспирантов, реклама в соответствии с законодательством Российской Федерации о рекламе

Учредитель: Общество с ограниченной ответственностью «Московский Двор»
ПИ №ФС77-54347
ISSN 2221-4607
Выпускается ежемесячно.
Издается с 2010 года.
Тираж 1000 экз.
gyrnal@bk.ru
Адрес редакции: 129366, г. Москва, ул. Ярославская, д.10, корп.2
Включение в eLibrary.ru: Лицензионный договор №114-03/2014
Отправить статью
Рассчитать стоимость
публикации статьи
График выпуска журнала
Поданные статьи авторов
Автор:
Дубовик Николай Николаевич
Должность:
Московский Государственный Технический Университет МГТУ им Н.Э. Баумана, г. Москва Студент, кафедра «Проектирование и технология производства электронной аппаратуры»
 
Получено:
23.03.2016
Статус:
принята к печати
Выход в печать:
Журнал №2(Vol. 25), 2016, 22.04.16

УДК 681.142

 

АНАЛИЗ СТРУКТУРЫ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ ПРОСТРАНСТВЕННОЙ НАВИГАЦИИ

Дубовик Николай Николаевич

Московский Государственный Технический Университет МГТУ им Н.Э. Баумана, г. Москва
Студент, кафедра «Проектирование и технология производства электронной аппаратуры»

 

Аннотация

Данная статья посвящена исследованиям проблем, связанных с созданием программной системы, реализующей функцию навигации внутри различных помещений. Рассматриваются вопросы, связанные с концептуальным проектированием информационной системы и с программной реализацией системы. Описывается экспериментальный образец программного комплекса навигации, реализованный на базе открытого ПО. В заключении приведены преимущества выбранного решения для построения навигации, даны рекомендации по применению.

 

Ключевые слова: навигация, здания со сложной архитектурой, трассировка, ориентация, геометрия, трехмерная графика, алгоритмы, математическое обеспечение.








THE ANALYSIS OF STRUCTURE OF INFORMATION SYSTEM FOR SPATIAL NAVIGATION

Dubovik Nikolay Nikolaevich

MGTU Moscow State Technical University N.E. Bauman,

Student, department «Design and production technology of the electronic equipment»


          Abstract

This article is devoted to researches of the problems connected with creation of the program system realizing function of navigation in various rooms. The questions connected with conceptual design of information system and with program realization of system are considered. The experimental sample of a program complex of navigation realized on the basis of open sourсe software is described. Advantages of the chosen decision to creation of navigation are given in the conclusion, recommendations about application are made.

 

Keywords: navigation, a building with a complex structure, tracing, orientation, geometry, three-dimensional graphics, algorithms, software.


ВВЕДЕНИЕ

 

В данный момент на рынке представлено довольно много различных систем, методов и технологий, предназначенных для навигации [1]. Однако большая часть таких технологий предназначена для работы не внутри зданий, а на открытом воздухе. Среди таких систем можно выделить: GPS, Galileo, ГЛОНАСС, iBeacon, WPS и др. В свою очередь для обработки навигационных данных, предоставленных с помощью вышеуказанных технологий используются такие сервисы, как: Google Maps, NAVIMIND, 2GIS.

При этом сейчас все острее встает проблема навигации внутри различных зданий и помещений, так же растет и заинтересованность в услугах, предоставляемых на основе местоположения клиента и его предпочтений. Здания с каждым днем становятся все более объемными, а их структура усложняется. В сооружениях такого типа уверенно могут ориентироваться лишь постоянные гости и сотрудники, и то такие посетители часто знают лишь необходимые им участки здания. В свою очередь ориентирование в здании для человека, который оказался там впервые, в большинстве случаев является крайне сложной задачей. Очевидно, что в такой ситуации на освоение в незнакомом месте тратится огромное количество времени, что чревато, например, опозданием на работу. Таким образом возникает потребность в сервисе, который поможет любому его пользователю максимально просто и без траты лишнего времени добраться до нужного ему места в здании.

Стоит так же отметить, что решения такой проблемы часто являются актуальными не только внутри, но и вне зданий – в условиях плотной застройки часто неэффективны даже системы, предназначенные специально для навигации на открытой местности.

Так как здания становятся все более громоздкими, классические методы навигации сильно теряют в эффективности. Решение в виде настенных планов уже не являются наглядными, особенно если размеры здания весьма велики. Зачастую конфигурация этажей разнится, что вносит еще больше путаницы в попытку сориентироваться и определить свое местоположение в здании. Вариант использования указателей так же крайне неэффективен, так как они используются лишь для обозначения самых важных помещений. Если же попытаться установить в здании указатели для всех помещений, то посетитель окажется просто переполнен количеством информации, в которой ему будет необходимо разобраться.

Решением этой проблемы должна быть автоматическая система, реализующая следующий функционал и обладающая такими свойствами:

-                     единое ядро для мобильного и веб-приложения;

-                     использование 2D и 3D – карт;

-                     построение наиболее простых и понятных маршрутов;

-                     упрощение взаимодействия клиентов (посетителей) и зданий;

-                     возможность пользовательского развития, когда пользователи имеют возможность вносить (после модерации) оперативные изменения в планы помещений;

-                     предоставление актуальной информации, такой как график работы, контактная информация и т.п.

Задачи прокладки эффективных маршрутов внутри зданий можно отнести к классическим задачам трассировки с линейными и пространственными ограничениями, которые хорошо проработаны и эффективно применяются в радиоэлектронике [2-9].


1 ТРЕБОВАНИЯ К НАВИГАЦИОННОЙ СИСТЕМЕ

 

В данный момент существуют несколько вариантов реализации подобных информационных систем, и все они предусматривают наличие следующего функционала как для клиентов, так и для администрирования:

Для пользовательского приложения:

-                     форма авторизации пользователя;

-                     отображение актуальной карты здания;

-                     просмотр свойств и информации о помещениях;

-                     прокладка маршруты с выбором начальной и конечной точки;

-                     запуск и остановка процесса формирования маршрута.

 

Для приложения администратора:

-                     изменение доступности различных функций или информации;

-                     предоставлять доступ к просмотру пользовательских данных;

-                     формировать статистические отчёты о работе системы;

-                     предоставлять доступ к управлению списком клиентов;

-                     предоставлять доступ к управлению списком зданий.

 

Так как разрабатываемая система нацелена на активное использование мобильного приложения, для неё была выбрана клиент-серверная архитектура, состоящая из следующих  компонентов:

-                     сервер с базами данных;

-                     веб-сервер;

-                     веб-интерфейс и интерфейс баз данных;

-                     тонкий клиент для мобильного приложения.

 

 

В данный момент на рынке имеется большое количество программных платформ и компонентов, дающих возможность реализации такой архитектуры. Однако в целях упрощения структуры и увеличения функционала были выбраны следующие компоненты:

 

-                     серверная ОС Linux Ubuntu 14.04;

-                     база данных MongoDB 3.0.6;

-                     веб-серверное ПО NodeJS 4.0.0;

-                     мобильные приложения для платформ Android и iOS.

 

Подобная структура информационной системы позволит в полной мере реализовать весь необходимый функционал, а также даст возможность легко и удобно работать над изменением самой системы.

 

2 ТЕХНИЧЕСКАЯ СТРУКТУРА СИСТЕМЫ

 

2.1 Архитектура системы

 

Как уже отмечалось ранее, для организации работы мобильного приложения используется двухуровневая клиент-серверная архитектура. Подробно техническая реализация этой архитектуры представлена на рисунке 1.

 

 

 

Рисунок 1: - Архитектура системы

 

Основные данные системы хранятся на сервере БД под управлением СУБД MongoDB. Вывод и изменение необходимых пользователям данных осуществляется с помощью веб-сервера Nginx под управлением NodeJS. Клиенты в свою очередь взаимодействуют с системой с помощью специальных мобильных приложений, работающих как на платформе Android, так и на iOS.


2.2 Структура программы

 

Программная часть системы indoor-навигации реализуется в виде набора приложений на языке программирования JavaScript, основанном на ECMAScript 5. Помимо этого используется фреймворк AngularJS, который позволяет разделить систему на модули.
          Приложение администрирования поделено на 5 основных модулей: «Аккаунт», «Статистика», «Управление», «Здание» и «Граф». Связь этих модулей в системе показана на рисунке 2.

 

 

 

Рисунок 2: - Модульная структура системы

 

Объекты класса «Статистика» играют роль транзакций в данной системе. Они отражают факты того, что пользователь A, авторизовавшийся в системе под своим аккаунтом B, в здании C запросил маршрут D. Эта информация в дальнейшем используется для формирования отчётности.

На диаграмме пакетов изображены связи между модулями приложения администрирования. Модули «Граф», «Здание» и «Клиент» напрямую связаны с соответствующими базами данных. Они нужны для хранения справочных данных.

Модуль «Маршрут» использует данные о зданиях, полученные через обращения к базе данных, для формирования маршрута и записи в статистику. Модуль «Управление системой» имеет доступ к модулю «Здание» и «Граф» для обеспечения актуальности информации и осуществления изменений.

 2.3 Описание логической структуры

Взаимодействие клиента с мобильным приложением осуществляется в один этап. Пользователю необходимо авторизоваться, выбрать здание и задать начальную и конечную точки маршрута:

 

-                     ввод логина и пароля или регистрация;

-                     выбор здания из доступных вручную или по геопозиции;

-                     вывод схемы 1-го этажа выбранного здания;

-                     выбор начальной и конечной точек пути маршрута;

-                     построение необходимого маршрута.

 

После формирования маршрута пользователю доступна возможность поделиться маршрутом, добавить его в избранное или построить другой маршрут. Аналогичным образом пользователь может запросить доступную информацию о любом объекте в выбранном здании.

 


2.4 Связи между составными частями программ

 

Связи между объектами навигационной системы показаны на рисунке 3. Центральным звеном является объект «Аккаунт», т.к. все перечисленные выше действия могут выполняться только с привязкой к конкретному пользователю.

 

 

 

Рисунок 3: - Связь модулей системы

 

Взаимодействие объектов «Аккаунт» и «Маршрут», как видно на диаграмме, является наиболее активным. Для обеспечения быстрой работы системы необходимо использовать высокоскоростные интерфейсы к БД в виду частых обращений как к данным аккаунта, так и к данным зданий.

 


ЗАКЛЮЧЕНИЕ

 

Созданная информационно-навигационная система решает множество важных задач, связанных с проблемами навигации в зданиях со сложной архитектурой, объединяя наиболее существенные функции в единой системе.

Структура данной системы сразу несколькими важными преимуществами:

 

-                     простота реализации;

-                     использование открытого ПО;

-                     работа на широком спектре устройств

 

Система реализована с помощью простой и уже зарекомендовавшей себя клиент-серверной архитектуры, которая обеспечивает стабильную и быструю работу, а также легкую масштабируемость и редактируемость системы.

Использование открытого и доступного ПО дает возможность тонкой настройки, модификации и отладки отдельных модулей системы, при этом не теряя в эффективности и скорости работы.

Программная реализация системы и используемые решения позволяют системе быстро и эффективно работать на широком спектре платформ и устройств.

Разработанная система является универсальным и удобным инструментом, способным быстро и эффективно решить любую задачу, связанную с предоставлением информации касательно здания, в котором применяется ИНС.


 

Библиографический список

 

1. Шепель В. И., Ергалиев Д. С., Тулегулов А. Д. Сравнительный анализ глобальных навигационных спутниковых систем // Труды Международного симпозиума «Надежность и качество». Том 1. 2012.

2. Камышная Э.Н., Маркелов В.В., Соловьев В.В. Конструкторско-технологические расчеты электронной аппаратуры: Учебное пособие. – М. Изд-во МГТУ им. Н. Э. Баумана, 2014.

3. Андреев К.А., Власов А.И., Камышная Э.Н., Тиняков Ю.Н., Лавров А.В. Автоматизированная пространственная оптимизация компоновки блока управления датчика давления по тепловому критерию // Инженерный журнал: наука и инновации. - 2013. № 6 (18). - С. 51.

4. Камышная Э.Н., Маркелов В.В., Соловьев В.В. Формальное представление электрических принципиальных схем для решения задач автоматизированного проектирования электронной аппаратуры: Учебное пособие. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2011. – 44, [4] с.

5. Применение методов искусственного интеллекта в САПР технологических процессов производства электронной аппаратуры: Учебное пособие / Григорьев В.П., Камышная Э.Н., Нестеров Ю.И., Никитин С.А. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1998. 48 с.

6. Е.М. Парфенов, Э.Н. Камышная, В.П. Усачов. Проектирование конструкций радиоэлектронной аппаратуры: Учеб. Пособие для вузов. - М.: Радио и связь, 1989. – 272 с.

7. Алексеев В.Г., Камышная Э.Н., Усачев В.П. Автоматизированная компоновка схем ЭВА и РЭА по конструктивным модулям первого уровня: Методические указания по курсовому и дипломному проектированию. – М.: Изд-во МВТУ им. Н.Э. Баумана, 1988. – 40 с.

8. Н. Л. Дембицкий, А. В. Назаров. Модели и методы в задачах автоматизированного конструирования радиотехнических устройств - Москва, Изд-во МАИ. 2011. 203 с. Сер. Научная библиотека.

9. Назаров А.В. Оптимизация расстановки элементов печатных модулей методом компактного размещения // Интеграл. 2014. № 4. С. 12-14.

10. Власов А.И., Лыткин С.Л., Яковлев В.Л. Краткое практическое руководство разработчика по языку PL/SQL - Москва, Сер. Библиотечка журнала "Информационные технологии". Том 2. 2000.

11. WebGL [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/WebGL (дата обращения: 10.11.2015).

12. A* search algorithm [Электронный ресурс] URL: https://en.wikipedia.org/wiki/A*_search_algorithm (дата обращения: 10.11.2015).

13. Johnson's algorithm [Электронный ресурс] URL: https://en.wikipedia.org/wiki/Johnson%27s_algorithm (дата обращения: 10.11.2015).

14. Floyd–Warshall algorithm [Электронный ресурс] URL: https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm (дата обращения: 10.11.2015).

15. Дубовик Н. Н., Ногин О. А., Туманов В. М., Лагута А. Е. Исследование проблем 3D навигации в условиях пространственных ограничений // 17-ая международная конференция «Наукоемкие технологии и интеллектуальные системы». Том 2. 2015. [Электронный ресурс] URL: https:// http://iu4.ru/konf/2015_ts/03_tom02.pdf (дата обращения: 10.11.2015).

16. Дубовик Н.Н., Ногин О.А., Туманов В.М. Информационно-навигационная система «ИНС» // Международный инвестиционный форум «WEB – Ready 2015». [Электронный ресурс] URL: https:// web-ready.ru/files/ins_1.doc (дата обращения: 10.11.2015).

УДК 681.142

 

АНАЛИЗ СТРУКТУРЫ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ ПРОСТРАНСТВЕННОЙ НАВИГАЦИИ

Дубовик Николай Николаевич

Московский Государственный Технический Университет МГТУ им Н.Э. Баумана, г. Москва
Студент, кафедра «Проектирование и технология производства электронной аппаратуры»

 

Аннотация

Данная статья посвящена исследованиям проблем, связанных с созданием программной системы, реализующей функцию навигации внутри различных помещений. Рассматриваются вопросы, связанные с концептуальным проектированием информационной системы и с программной реализацией системы. Описывается экспериментальный образец программного комплекса навигации, реализованный на базе открытого ПО. В заключении приведены преимущества выбранного решения для построения навигации, даны рекомендации по применению.

 

Ключевые слова: навигация, здания со сложной архитектурой, трассировка, ориентация, геометрия, трехмерная графика, алгоритмы, математическое обеспечение.








THE ANALYSIS OF STRUCTURE OF INFORMATION SYSTEM FOR SPATIAL NAVIGATION

Dubovik Nikolay Nikolaevich

MGTU Moscow State Technical University N.E. Bauman,

Student, department «Design and production technology of the electronic equipment»


          Abstract

This article is devoted to researches of the problems connected with creation of the program system realizing function of navigation in various rooms. The questions connected with conceptual design of information system and with program realization of system are considered. The experimental sample of a program complex of navigation realized on the basis of open sourсe software is described. Advantages of the chosen decision to creation of navigation are given in the conclusion, recommendations about application are made.

 

Keywords: navigation, a building with a complex structure, tracing, orientation, geometry, three-dimensional graphics, algorithms, software.


ВВЕДЕНИЕ

 

В данный момент на рынке представлено довольно много различных систем, методов и технологий, предназначенных для навигации [1]. Однако большая часть таких технологий предназначена для работы не внутри зданий, а на открытом воздухе. Среди таких систем можно выделить: GPS, Galileo, ГЛОНАСС, iBeacon, WPS и др. В свою очередь для обработки навигационных данных, предоставленных с помощью вышеуказанных технологий используются такие сервисы, как: Google Maps, NAVIMIND, 2GIS.

При этом сейчас все острее встает проблема навигации внутри различных зданий и помещений, так же растет и заинтересованность в услугах, предоставляемых на основе местоположения клиента и его предпочтений. Здания с каждым днем становятся все более объемными, а их структура усложняется. В сооружениях такого типа уверенно могут ориентироваться лишь постоянные гости и сотрудники, и то такие посетители часто знают лишь необходимые им участки здания. В свою очередь ориентирование в здании для человека, который оказался там впервые, в большинстве случаев является крайне сложной задачей. Очевидно, что в такой ситуации на освоение в незнакомом месте тратится огромное количество времени, что чревато, например, опозданием на работу. Таким образом возникает потребность в сервисе, который поможет любому его пользователю максимально просто и без траты лишнего времени добраться до нужного ему места в здании.

Стоит так же отметить, что решения такой проблемы часто являются актуальными не только внутри, но и вне зданий – в условиях плотной застройки часто неэффективны даже системы, предназначенные специально для навигации на открытой местности.

Так как здания становятся все более громоздкими, классические методы навигации сильно теряют в эффективности. Решение в виде настенных планов уже не являются наглядными, особенно если размеры здания весьма велики. Зачастую конфигурация этажей разнится, что вносит еще больше путаницы в попытку сориентироваться и определить свое местоположение в здании. Вариант использования указателей так же крайне неэффективен, так как они используются лишь для обозначения самых важных помещений. Если же попытаться установить в здании указатели для всех помещений, то посетитель окажется просто переполнен количеством информации, в которой ему будет необходимо разобраться.

Решением этой проблемы должна быть автоматическая система, реализующая следующий функционал и обладающая такими свойствами:

-                     единое ядро для мобильного и веб-приложения;

-                     использование 2D и 3D – карт;

-                     построение наиболее простых и понятных маршрутов;

-                     упрощение взаимодействия клиентов (посетителей) и зданий;

-                     возможность пользовательского развития, когда пользователи имеют возможность вносить (после модерации) оперативные изменения в планы помещений;

-                     предоставление актуальной информации, такой как график работы, контактная информация и т.п.

Задачи прокладки эффективных маршрутов внутри зданий можно отнести к классическим задачам трассировки с линейными и пространственными ограничениями, которые хорошо проработаны и эффективно применяются в радиоэлектронике [2-9].


1 ТРЕБОВАНИЯ К НАВИГАЦИОННОЙ СИСТЕМЕ

 

В данный момент существуют несколько вариантов реализации подобных информационных систем, и все они предусматривают наличие следующего функционала как для клиентов, так и для администрирования:

Для пользовательского приложения:

-                     форма авторизации пользователя;

-                     отображение актуальной карты здания;

-                     просмотр свойств и информации о помещениях;

-                     прокладка маршруты с выбором начальной и конечной точки;

-                     запуск и остановка процесса формирования маршрута.

 

Для приложения администратора:

-                     изменение доступности различных функций или информации;

-                     предоставлять доступ к просмотру пользовательских данных;

-                     формировать статистические отчёты о работе системы;

-                     предоставлять доступ к управлению списком клиентов;

-                     предоставлять доступ к управлению списком зданий.

 

Так как разрабатываемая система нацелена на активное использование мобильного приложения, для неё была выбрана клиент-серверная архитектура, состоящая из следующих  компонентов:

-                     сервер с базами данных;

-                     веб-сервер;

-                     веб-интерфейс и интерфейс баз данных;

-                     тонкий клиент для мобильного приложения.

 

 

В данный момент на рынке имеется большое количество программных платформ и компонентов, дающих возможность реализации такой архитектуры. Однако в целях упрощения структуры и увеличения функционала были выбраны следующие компоненты:

 

-                     серверная ОС Linux Ubuntu 14.04;

-                     база данных MongoDB 3.0.6;

-                     веб-серверное ПО NodeJS 4.0.0;

-                     мобильные приложения для платформ Android и iOS.

 

Подобная структура информационной системы позволит в полной мере реализовать весь необходимый функционал, а также даст возможность легко и удобно работать над изменением самой системы.

 

2 ТЕХНИЧЕСКАЯ СТРУКТУРА СИСТЕМЫ

 

2.1 Архитектура системы

 

Как уже отмечалось ранее, для организации работы мобильного приложения используется двухуровневая клиент-серверная архитектура. Подробно техническая реализация этой архитектуры представлена на рисунке 1.

 

 

 

Рисунок 1: - Архитектура системы

 

Основные данные системы хранятся на сервере БД под управлением СУБД MongoDB. Вывод и изменение необходимых пользователям данных осуществляется с помощью веб-сервера Nginx под управлением NodeJS. Клиенты в свою очередь взаимодействуют с системой с помощью специальных мобильных приложений, работающих как на платформе Android, так и на iOS.


2.2 Структура программы

 

Программная часть системы indoor-навигации реализуется в виде набора приложений на языке программирования JavaScript, основанном на ECMAScript 5. Помимо этого используется фреймворк AngularJS, который позволяет разделить систему на модули.
          Приложение администрирования поделено на 5 основных модулей: «Аккаунт», «Статистика», «Управление», «Здание» и «Граф». Связь этих модулей в системе показана на рисунке 2.

 

 

 

Рисунок 2: - Модульная структура системы

 

Объекты класса «Статистика» играют роль транзакций в данной системе. Они отражают факты того, что пользователь A, авторизовавшийся в системе под своим аккаунтом B, в здании C запросил маршрут D. Эта информация в дальнейшем используется для формирования отчётности.

На диаграмме пакетов изображены связи между модулями приложения администрирования. Модули «Граф», «Здание» и «Клиент» напрямую связаны с соответствующими базами данных. Они нужны для хранения справочных данных.

Модуль «Маршрут» использует данные о зданиях, полученные через обращения к базе данных, для формирования маршрута и записи в статистику. Модуль «Управление системой» имеет доступ к модулю «Здание» и «Граф» для обеспечения актуальности информации и осуществления изменений.

 2.3 Описание логической структуры

Взаимодействие клиента с мобильным приложением осуществляется в один этап. Пользователю необходимо авторизоваться, выбрать здание и задать начальную и конечную точки маршрута:

 

-                     ввод логина и пароля или регистрация;

-                     выбор здания из доступных вручную или по геопозиции;

-                     вывод схемы 1-го этажа выбранного здания;

-                     выбор начальной и конечной точек пути маршрута;

-                     построение необходимого маршрута.

 

После формирования маршрута пользователю доступна возможность поделиться маршрутом, добавить его в избранное или построить другой маршрут. Аналогичным образом пользователь может запросить доступную информацию о любом объекте в выбранном здании.

 


2.4 Связи между составными частями программ

 

Связи между объектами навигационной системы показаны на рисунке 3. Центральным звеном является объект «Аккаунт», т.к. все перечисленные выше действия могут выполняться только с привязкой к конкретному пользователю.

 

 

 

Рисунок 3: - Связь модулей системы

 

Взаимодействие объектов «Аккаунт» и «Маршрут», как видно на диаграмме, является наиболее активным. Для обеспечения быстрой работы системы необходимо использовать высокоскоростные интерфейсы к БД в виду частых обращений как к данным аккаунта, так и к данным зданий.

 


ЗАКЛЮЧЕНИЕ

 

Созданная информационно-навигационная система решает множество важных задач, связанных с проблемами навигации в зданиях со сложной архитектурой, объединяя наиболее существенные функции в единой системе.

Структура данной системы сразу несколькими важными преимуществами:

 

-                     простота реализации;

-                     использование открытого ПО;

-                     работа на широком спектре устройств

 

Система реализована с помощью простой и уже зарекомендовавшей себя клиент-серверной архитектуры, которая обеспечивает стабильную и быструю работу, а также легкую масштабируемость и редактируемость системы.

Использование открытого и доступного ПО дает возможность тонкой настройки, модификации и отладки отдельных модулей системы, при этом не теряя в эффективности и скорости работы.

Программная реализация системы и используемые решения позволяют системе быстро и эффективно работать на широком спектре платформ и устройств.

Разработанная система является универсальным и удобным инструментом, способным быстро и эффективно решить любую задачу, связанную с предоставлением информации касательно здания, в котором применяется ИНС.


 

Библиографический список

 

1. Шепель В. И., Ергалиев Д. С., Тулегулов А. Д. Сравнительный анализ глобальных навигационных спутниковых систем // Труды Международного симпозиума «Надежность и качество». Том 1. 2012.

2. Камышная Э.Н., Маркелов В.В., Соловьев В.В. Конструкторско-технологические расчеты электронной аппаратуры: Учебное пособие. – М. Изд-во МГТУ им. Н. Э. Баумана, 2014.

3. Андреев К.А., Власов А.И., Камышная Э.Н., Тиняков Ю.Н., Лавров А.В. Автоматизированная пространственная оптимизация компоновки блока управления датчика давления по тепловому критерию // Инженерный журнал: наука и инновации. - 2013. № 6 (18). - С. 51.

4. Камышная Э.Н., Маркелов В.В., Соловьев В.В. Формальное представление электрических принципиальных схем для решения задач автоматизированного проектирования электронной аппаратуры: Учебное пособие. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2011. – 44, [4] с.

5. Применение методов искусственного интеллекта в САПР технологических процессов производства электронной аппаратуры: Учебное пособие / Григорьев В.П., Камышная Э.Н., Нестеров Ю.И., Никитин С.А. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1998. 48 с.

6. Е.М. Парфенов, Э.Н. Камышная, В.П. Усачов. Проектирование конструкций радиоэлектронной аппаратуры: Учеб. Пособие для вузов. - М.: Радио и связь, 1989. – 272 с.

7. Алексеев В.Г., Камышная Э.Н., Усачев В.П. Автоматизированная компоновка схем ЭВА и РЭА по конструктивным модулям первого уровня: Методические указания по курсовому и дипломному проектированию. – М.: Изд-во МВТУ им. Н.Э. Баумана, 1988. – 40 с.

8. Н. Л. Дембицкий, А. В. Назаров. Модели и методы в задачах автоматизированного конструирования радиотехнических устройств - Москва, Изд-во МАИ. 2011. 203 с. Сер. Научная библиотека.

9. Назаров А.В. Оптимизация расстановки элементов печатных модулей методом компактного размещения // Интеграл. 2014. № 4. С. 12-14.

10. Власов А.И., Лыткин С.Л., Яковлев В.Л. Краткое практическое руководство разработчика по языку PL/SQL - Москва, Сер. Библиотечка журнала "Информационные технологии". Том 2. 2000.

11. WebGL [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/WebGL (дата обращения: 10.11.2015).

12. A* search algorithm [Электронный ресурс] URL: https://en.wikipedia.org/wiki/A*_search_algorithm (дата обращения: 10.11.2015).

13. Johnson's algorithm [Электронный ресурс] URL: https://en.wikipedia.org/wiki/Johnson%27s_algorithm (дата обращения: 10.11.2015).

14. Floyd–Warshall algorithm [Электронный ресурс] URL: https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm (дата обращения: 10.11.2015).

15. Дубовик Н. Н., Ногин О. А., Туманов В. М., Лагута А. Е. Исследование проблем 3D навигации в условиях пространственных ограничений // 17-ая международная конференция «Наукоемкие технологии и интеллектуальные системы». Том 2. 2015. [Электронный ресурс] URL: https:// http://iu4.ru/konf/2015_ts/03_tom02.pdf (дата обращения: 10.11.2015).

16. Дубовик Н.Н., Ногин О.А., Туманов В.М. Информационно-навигационная система «ИНС» // Международный инвестиционный форум «WEB – Ready 2015». [Электронный ресурс] URL: https:// web-ready.ru/files/ins_1.doc (дата обращения: 10.11.2015).

Новости

Журнал №3 (Vol. 91) вышел в свет 25 марта 2022 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 марта 2022 ГОДА. Уже 17 статей приняты.
Журнал №2 (Vol. 90) вышел в свет 25 февраля 2022 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2022 ГОДА. Уже 46 статей приняты.
Журнал №1 (Vol. 89) вышел в свет 25 января 2022 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 января 2022 ГОДА. Уже 35 статей приняты.
ВНИМАНИЕ! Для постоянных авторов действует скидка. С 2021 года стоимость одной страницы составляет 150 рублей.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2021 ГОДА. Уже 44 статьи приняты.
Журнал №11 (Vol. 87) вышел в свет 25 ноября 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ноября 2021 ГОДА. Уже 33 статьи приняты.
Журнал №10 (Vol. 86) вышел в свет 25 октября 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2021 ГОДА. Уже 20 статей приняты.
Журнал №9 (Vol. 85) вышел в свет 25 сентября 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2021 ГОДА. Уже 10 статей приняты.
Журнал №8 (Vol. 84) вышел в свет 25 августа 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2021 ГОДА. Уже 15 статей приняты.
Журнал №7 (Vol. 83) вышел в свет 25 июля 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2021 ГОДА. Уже 12 статей приняты.
Журнал №6 (Vol. 82) вышел в свет 25 июня 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июня 2021 ГОДА. Уже 34 статьи приняты.
Журнал №5 (Vol. 81) вышел в свет 25 мая 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 мая 2021 ГОДА. Уже 49 статей приняты.
Журнал №4 (Vol. 80) вышел в свет 25 апреля 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2021 ГОДА. Уже 41 статья принята.
Журнал №3 (Vol. 79) вышел в свет 25 марта 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 марта 2021 ГОДА. Уже 24 статьи приняты.
Журнал №2 (Vol. 78) вышел в свет 25 февраля 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2021 ГОДА. Уже 43 статьи приняты.
Журнал №1 (Vol. 77) вышел в свет 25 января 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 января 2021 ГОДА. Уже 31 статья приняты.
Журнал №12 (Vol. 76) вышел в свет 25 декабря 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2020 ГОДА. Уже 62 статьи приняты.
Журнал №11 (Vol. 75) вышел в свет 25 ноября 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ноября 2020 ГОДА. Уже 76 статей приняты.
Журнал №10 (Vol. 74) вышел в свет 25 октября 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2020 ГОДА. Уже 29 статей приняты.
Журнал №9 (Vol. 73) вышел в свет 25 сентября 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2020 ГОДА. Уже 26 статей приняты.
Журнал №8 (Vol. 72) вышел в свет 25 августа 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2020 ГОДА. Уже 33 статьи приняты.
Журнал №7 (Vol. 71) вышел в свет 25 июля 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2020 ГОДА. Уже 39 статей приняты.
Журнал №6 (Vol. 70) вышел в свет 25 июня 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июня 2020 ГОДА. Уже 38 статей приняты.
Журнал №5 (Vol. 69) вышел в свет 25 мая 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 мая 2020 ГОДА. Уже 60 статей приняты.
Журнал №4 (Vol. 68) вышел в свет 25 апреля 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2020 ГОДА. Уже 43 статьи приняты.
Журнал №3 (Vol. 67) вышел в свет 25 марта 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 марта 2020 ГОДА. Уже 44 статьи приняты.
Журнал №2 (Vol. 66) вышел в свет 25 февраля 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2020 ГОДА. Уже 54 статьи приняты.
Журнал №1 (Vol. 65) вышел в свет 25 января 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 января 2020 ГОДА. Уже 34 статьи приняты.
Журнал №16 (Vol. 64) вышел в свет 25 декабря 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2019 ГОДА. Уже 88 статей приняты.
Журнал №14 (Vol. 63) вышел в свет 25 ноября 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ноября 2019 ГОДА. Уже 51 статья приняты.
Журнал №14 (Vol. 62) вышел в свет 25 октября 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2019 ГОДА. Уже 47 статей приняты.
Журнал №13 (Vol. 61) вышел в свет 25 сентября 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2019 ГОДА. Уже 24 статьи приняты.
Журнал №12 (Vol. 60) вышел в свет 25 августа 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2019 ГОДА. Уже 17 статей приняты.
Журнал №11 (Vol. 59) вышел в свет 25 июля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2019 ГОДА. Уже 22 статьи приняты.
Журнал №10 (Vol. 58) вышел в свет 2 июля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 2 июля 2019 ГОДА. Уже 36 статей приняты.
Журнал №9 (Vol. 57) вышел в свет 10 июня 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 10 июня 2019 ГОДА. Уже 43 статьи приняты.
Журнал №8 (Vol. 56) вышел в свет 20 мая 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 20 мая 2019 ГОДА. Уже 34 статьи приняты.
Журнал №7 (Vol. 55) вышел в свет 1 мая 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 1 мая 2019 ГОДА. Уже 22 статьи приняты.
Журнал №6 (Vol. 54) вышел в свет 15 апреля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 15 апреля 2019 ГОДА. Уже 34 статьи приняты.
Журнал №5 (Vol. 53) вышел в свет 1 апреля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 1 апреля 2019 ГОДА. Статьи принимаются до 31 марта. Уже 85 статей приняты.
Журнал №4 (Vol. 52) вышел в свет 15 марта 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 15 марта 2019 ГОДА. Уже 100 статей приняты.
Журнал №3 (Vol. 51) вышел в свет 1 марта 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 1 марта 2019 ГОДА. Уже 114 статей приняты.
Журнал №2 (Vol. 50) вышел в свет 10 февраля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 10 февраля 2019 ГОДА. Уже 99 статей приняты.
Журнал №1 (Vol. 49) вышел в свет 20 января 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 20 января 2019 ГОДА. Уже 98 статей приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2018 ГОДА. Уже 102 статьи приняты.
Журнал №12 (Vol. 47) вышел в свет 3 декабря 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 3 декабря 2018 ГОДА. Уже 87 статей приняты.
Журнал №11 (Vol. 46) вышел в свет 10 ноября 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 10 ноября 2018 ГОДА. Уже 84 статьи приняты.
Журнал №10 (Vol. 45) вышел в свет 25 октября 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2018 ГОДА. Уже 84 статьи приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2018 ГОДА. Уже 75 статей приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2018 ГОДА. Уже 78 статей приняты.
Журнал №7 (Vol. 42) вышел в свет 25 июля 2018 года.
Электронная версия 6 выпуска (2018) журнала загружена на сайт научной электронной библиотеки eLIBRARY.RU
https://elibrary.ru/contents.asp?titleid=48986.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2018 ГОДА. Уже 54 статьи приняты.
Журнал №6 (Vol. 41) вышел в свет 25 июня 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июня 2018 ГОДА. Уже 47 статей приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 мая 2018 ГОДА. Уже 22 статьи приняты.
Журнал №4 (Vol. 39) вышел в свет 25 апреля 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2018 ГОДА. Уже19 статей приняты.
В ближайшие дни журнал №3 (Vol. 38) будет размещен на сайте eLIBRARY.RU - крупнейшей в России электронной библиотеки научных публикаций. Библиотека интегрирована с Российским индексом научного цитирования (РИНЦ).
Журнал №3 (Vol. 38) вышел в свет 30 марта 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2018 ГОДА. Уже 2 статьи приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 30 марта 2018 ГОДА. Уже 14статей приняты.
Журнал №2 (Vol. 37) вышел в свет 25 февраля 2018 года
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2018 ГОДА. Уже 3 статьи приняты.
Журнал №1 (Vol. 36) вышел в свет 25 января 2018 года
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ЯНВАРЯ 2018 ГОДА. Уже 15 статей приняты.
Журнал №6 (Vol. 35) вышел в свет 20 декабря 2017 года
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 20 ДЕКАБРЯ 2017 ГОДА. Уже 26 статей приняты.
Журнал №5 (Vol. 34) вышел в свет 20 ноября 2017 года
СЛЕДУЮЩИЙ ВЫПУСК 20 НОЯБРЯ 2017 ГОДА. Уже 18 статей
Журнал №4 (Vol. 33) вышел в свет 30 сентября 2017 года
Журнал №3 (Vol. 32) вышел в свет 28 июля 2017 года
Журнал №2 (Vol. 31) вышел в свет 25 мая 2017 года
Журнал №1 (Vol. 30) вышел в свет 30 марта 2017 года
Журнал №6 вышел в свет 30 декабря 2016 года
Журнал №5 вышел в свет 28 октября 2016 года
Журнал №4 вышел в свет 17.08.16.
Тираж 1000 экз.
Журнал №3 (2016) Vol. 26
подписан 06.06.16.
Тираж 1000 экз.
Журнал №2 (2016) Vol. 25
подписан 24.04.16.
Тираж 1000 экз.
Набираем статьи для 2-го выпуска журнала в 2016 году.
Журнал №1 (2016) Vol. 24
подписан 25.02.16.
Тираж 1000 экз.
Набираем статьи для 1-го выпуска 2016 года.
Журнал №6 (Vol. 23) 2015 года подписан в печать 11.12.16
Тираж 1000 экз.
Набираем статьи для 6-го выпуска журнала.
Выпуск выйдет 15 января 2016 года
Журнал №5 (Vol. 22) 2015 года подписан в печать 24.11.15
Тираж 1000 экз.
Вышел в печать 5 выпуск журнала
Вниманию авторов: Продолжается набор статей для 5-го выпуска журнала.
Журнал №4 (Vol. 21) 2015 года подписан в печать 18.09.15
Тираж 1000 экз.
Журнал №3 (Vol. 20) 2015 года подписан в печать 08.07.15
Тираж 1000 экз.
Журнал №2 (Vol. 19) 2015 года подписан в печать 01.05.15
Тираж 1000 экз.
Журнал №1 (Vol. 18) 2015 года подписан в печать 17.03.15
Тираж 1000 экз.
Журнал №8 (Vol. 17) 2104 года подписан в печать 28.12.14.
Тираж 1000 экз.
Журнал №7 (Vol.16) подписан в печать 24.11.14. Тираж 1000 экз.
Журнал №6 подписан 28.08.14.
Тираж 1000 экз.
Журнал №5 подписан 22.05.14.
Тираж 1000 экз.
Журнал №4 подписан 20.03.14.
Тираж 1000 экз.
Журнал №3 подписан 12.02.14.
Тираж 1000 экз.
Журнал №2 подписан 10.01.14.
Тираж 1000 экз.
Журнал №1 подписан 05.11.13.
Тираж 1000 экз.
Журнал №3 (Vol. 38) вышел в свет 30 марта 2018 года.В ближайшие дни этот журнал будет размещен на сайте eLIBRARY.RU - крупнейшей в России электронной библиотеки научных публикаций. Библиотека интегрирована с Российским индексом научного цитирования (РИНЦ).
Индексируется в: