Методические материалы «Устройства мультимедиа на ПК»
«Образование и наука в России и за рубежом»
научно-образовательное издание для преподавателей и аспирантов, реклама в соответствии с законодательством Российской Федерации о рекламе

Учредитель: Общество с ограниченной ответственностью «Московский Двор»
ПИ №ФС77-54347
ISSN 2221-4607
Выпускается ежемесячно.
Издается с 2010 года.
Тираж 1000 экз.
+7(910)445-77-88
gyrnal@bk.ru
Адрес редакции: 129366, г. Москва, ул. Ярославская, д.10, корп.2
Включение в eLibrary.ru: Лицензионный договор №114-03/2014
Отправить статью
Следующий выпуск
25 апреля
Рассчитать стоимость
публикации статьи
График выпуска журнала
Методическая библиотека
Опубликовать свою работу
ФИО:
Должность:
Место работы:
Дата:
PDF:
Word:
Соглашение:
Королев Р.П.
Студент
ГОУ СПО ПК№47
17.04.2014
Устройства мультимедиа на ПК

 

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

 

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ №47 им. В.Г. Федорова

К защите допущен.
Зам. директора по УПР:
___________ Лайков В.В.

 

Профессия НПО:

         шифр: 1.9

    наименование: Оператор ЭВМ

 

Профессия по ОК: Оператор ЭВМ

 

ПИСЬМЕННАЯ ЭКЗАМЕНАЦИОННАЯ РАБОТА

Тема: «Устройства мультимедиа на ПК» 

 

 

 

        

Выпускник – _________________                                                   Группа №_____

 

Руководитель работы: _______________                                 «__»_____2011г.

                                        (подпись, Ф.И.О.) 

 

Оценка____________________

               (цифрой и прописью)

 

 

 

 

 

 

 

 

 

Москва 2011 г.

 

 

 

Консультант по:

 

- по графической части – ___________________  

                                                      (Ф.И.О., подпись)

                                                                                         Оценка____________

 

- по экономической части –  ____________

                                                    (Ф.И.О., подпись)

                                                                                         Оценка____________

 

 

 

УТВЕРЖДАЮ:

Зам. директора по УПР ГОУ СПО ПК№47

им. В.Г.Федорова

Лайков В.В.

«__»_________2011г.

 

 

ЗАДАНИЕ

для письменной экзаменационной работы

 

Обучающемуся   ___________________________

                               (фамилия, имя, отчество)

ГОУ СПО ПК№47 им. В.Г.Федорова                    Группа №_______

 

Профессия НПО: Оператор электронно-вычислительных машин

 

Профессия ОК: Оператор электронно-вычислительных машин (ЭВМ)

 

Тема задания: «Устройства мультимедиа на ПК» 

 

 

Дата выдачи работы «___»_________2011г.

Срок сдачи работы   «___»_________2011 г.

 

Перечень вопросов, подлежащих разработке

 

1. Пояснительная записка

1.1. Описание технологии создания - ____________________________

____________________________________________________________

____________________________________________________________

____________________________________________________________

1.2. Описание используемых технических средств - _______________

____________________________________________________________

____________________________________________________________

1.3. Описание используемого программного обеспечения - _________

____________________________________________________________

____________________________________________________________

1.4. Правила техники безопасности при выполнении данных работ и организация рабочего места ____________________________________

_____________________________________________________________

    2. Экономическая часть

2.1. Определение себестоимости выполняемых работ

 

3. Создание демонстрационной электронной версии задания

__________________________________________________________________

__________________________________________________________________

 

 

 

 

Работа должна состоять из:

  1. Титульного листа.
  2. Содержания.
  3. Введения.
  4. Пояснительной записки.
  5. Экономической части.
  6. Графической части.
  7. Заключения.
  8. Списка литературы.
  9. Приложений.

 

Литература

  1. _____________________________________________________________
  2. _____________________________________________________________
  3. _____________________________________________________________
  4. _____________________________________________________________
  5. _____________________________________________________________
  6. _____________________________________________________________
  7. _____________________________________________________________
  8. _____________________________________________________________

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задание выдал преподаватель_________________________ ______________ 

                                                               (подпись, Ф.И.О.)

 

 


 

Содержание

Введение. 6

1.1.    Технические вопросы. 7

1.1.1 Видео. 7

1.1.2. Аудио. 11

2.    Носители информации. 14

2.1. Аппаратные средства мультимедиа. 18

2.1.1.   Звуковые карты. 19

2.1.2. Видеокарты. 21

2.1.3. Преобразователи VGA-TV. 22

3. Техника безопасности и организация рабочего места  оператора ЭВМ.. 23

3.1. Рабочее место оператора ЭВМ.. 23

3.2. Мероприятия по оптимизации рабочих мест 25

3.3. Мероприятия по улучшению состояния рабочих помещений. 26

3.4. Организация рабочего места и стандарты безопасности. 27

Заключение. 31

Список литературы. 32

 

 

 

 

 

 

 

Письменная экзаменационная работа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

Стадия

Лист

Листов

Преподаватель

Фамилия

Подпись

Дата

У

5

32

 

 

 

 

ГОУ СПО ПК №47 им. В.Г.Федорова

Гр. №

Обучающийся

Фамилия

Подпись

Дата

 

 

 

 

 

 

Введение

 Мультимедиа — это интерактивные системы, обеспечивающие ра­боту с непод­вижными изображениями и движущимся видео, анимированной компьютерной графикой и текстом, речью и высококачественным звуком.

Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.

Появление систем мультимедиа подготовлено как с требованиями прак­тики, так и с развитием тео­рии. Однако, резкий рывок в этом направлении, произошедший в этом направлении за последние несколько лет, обеспечен прежде всего развитием технических и системных средств. Это и прогресс в развитии ПЭВМ: резко возросшие объем памяти, быстродействие, графиче­ские возможности, характеристики внешней памяти, и достижения в об­ласти видеотехники, лазерных дисков —  аналоговых и CD-ROM, а также их массовое внедрение. Важную роль сыграла так же разработка методов быстрого и эффективного сжатия / развертки данных.

Современный мультимедиа–ПК в полном “вооружении” напоминает домашний стереофонический Hi–Fi комплекс, объединенный с дисплеем–те­левизором. Он укомплектован активными стереофоническими колонками, микрофоном и дисководом для оптических компакт–дисков CD–ROM (CD — Compact Disc, компакт–диск; ROM — Read only Memory, память только для считывания). Кроме того, внутри компьютера укрыто новое для ПК устройство — аудиоадаптер, по­зволивший перейти к прослушиванию чистых стереофонических звуков че­рез акустические колонки с встроенными усилителями.

                                                                                                  

 

 

 

 

Письменная экзаменационная работа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

 

Стадия

Лист

Листов

Преподаватель

Фамилия

Подпись

Дата

У

6

32

 

 

 

 

ГОУ СПО ПК №47 им. В.Г.Федорова

Гр. №

Обучающийся

Фамилия

Подпись

Дата

 

 

 

 

 

 

1.1.     Технические вопросы

Рассмотрим некоторые технические вопросы, касающиеся мультимедиа. Основная проблема, из которой “растут” все основные — совместная обработка разнородных данных: цифровых и аналоговых, “живого” видео и неподвижных изображений и т.п. В компьютере все дан­ные хранятся в цифровой форме, в то время как теле-, видео- и большин­ство аудиоаппаратуры имеет дело с аналоговым сигналом. Однако выходные устройства компьютера — мониторы и динамики имеют анало­говый выход. Поэтому простейший и наиболее дешевый путь построения первых систем мультимедиа состоял в стыковке разнородной аппаратуры с компьютером, предоставлении компьютеру возможностей управления этими устройствами, совмещении выходных сигналов компьютера и видео- и аудиоустройств и обеспечении их нормальной совместной работы. Даль­нейшее развитие мультимедиа происходит в направлении объедине­ния разнородных типов данных в цифровой форме на одной среде-носителе, в рамках одной системы.

1.1.1 Видео

При смешении сигналов основные проблемы возникают с видео–изоб­ражением. Различные ТВ–стандарты, существующие в мире (NTSC, PAL, SE­CAM), применение разных мониторов и видеоконтроллеров диктует разнообразие подходов в разрешении возникающих проблем. Однако в лю­бом случае требуется синхронизация двух изображений, для чего служит устройство генлок (genlock). С его помощью на экране монитора могут быть совмещены изображение, сгенерированное компьютером (анимированная или неподвижная графика, текст, титры), и “живое” видео. Если добавить еще одно устройство — кодер (encoder), компьютерное изо­бражение может быть преобразовано в форму ТВ–сигнала и записано на ви­деопленку. "Настольные видео–студии”, являющиеся одним из примеров применения систем мультимедиа, позволяют готовить совмещенные видео–компьютерные клипы, титры для видеофильмов, помогают при монтаже кинофильмов.

 

 

 

 

 

Письменная экзаменационная работа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пояснительная

записка

Стадия

Лист

Листов

Преподаватель

Фамилия

Подпись

Дата

У

7

32

 

 

 

 

ГОУ СПО ПК №47 им. В.Г.Федорова

Гр. №

Обучающийся

Фамилия

Подпись

Дата

 

 

 

 

 

 

Системы такого рода не позволяют  как-то обрабатывать или редактировать само аналоговое изображение. Для того, чтобы это стало воз­можным, его необходимо оцифровать и ввести в память компьютера. Для этого служат так называемые платы захвата (capture board, frame grab­bers). Оцифровка аналоговых сигналов порождает огромные массивы дан­ных. Так, кадр стандарта NTSC (525 строк), преобразованный платой типа Truevision, превращается в компьютерное изображение с разрешением 512x482 пиксель. Если каждая точка представлена 8 битами, то для хранения всей картинки требуется около 250 Кбайт памяти, причем падает качество изображения, так как обеспечивается только 256 различных цветов. Считается, что для адекватной передачи исходного изображения требуется 16 млн. оттенков, поэтому используется 24-битовый формат хранения цветной картинки, а необходимый размер памяти возрастает. Оцифрованный кадр может затем быть изменен, отредактирован обычным графическим редактором, могут быть убраны или добавлены  детали, изменены цвета, масштабы, добавлены спецэффекты, типа мозаики, инверсии и т.д. Естественно, интерактивная экранная обработка возможна лишь в пределах разрешения, обеспечиваемого данным конкретным видеоадаптером. Обработанные кадры могут быть записаны на диск в каком–либо графическом формате и затем использоваться в качестве реалистического неподвижного фона для компьютерной анимации. Возможна также   покадровая  обработка исходного изображения и вывод обратно на видеопленку для создания псевдореалистического мультфильма.

Запись последовательности кадров в цифровом виде требует от компьютера больших объемов внешней памяти: частота кадров в американском ТВ–стандарте NTSC — 30 кадров/с (PAL, SECAM — 25 кадров/с), так что для запоминания одной секунды полноцветного полноэкранного видео требуется 20–30 Мбайт, а оптический диск емкостью 600 Мбайт вместит менее полминуты изображения. Но последовательность кадров недостаточно только запомнить, ее надо еще вывести на экран в соответствующем темпе. Подобной скоростью передачи информации — около 30 Мбайт / с — не обладает ни одно из существующих внешних запоминающих устройств. Чтобы выводить на экран компьютера оцифрованное видео, приходится идти на уменьшение объема передаваемых данных, (вывод уменьшенного изображения

 

Письменная экзаменационная работа

Лист

8

 

 

в небольшом окне, снижение частоты кадровой развертки до 10–15 кадров / с, уменьшение числа бит / пиксель), что, в свою очередь приводит к ухудшению качества изображения.

Более радикально обе проблемы — памяти и пропускной способности — решаются с помощью методов сжатия / развертки данных, которые позволяют сжимать информацию перед записью на внешнее устройство, а затем считывать и разворачивать в реальном режиме времени при выводе на экран. Так, для движущихся видео–изображений существующие адаптивные разностные алгоритмы могут сжимать данные с коэффициентом порядка 100:1— 160:1, что позволяет разместить на CD–ROM около часа полноценного озвученного видео. Работа этих алгоритмов основана на том, что обычно последующий кадр отличается от предыдущего лишь некоторыми деталями, поэтому, взяв какой–то кадр за базовый, для следующих можно хранить только относительные изменения. При значительных изменениях кадра, например, при монтажной склейке, наезде или панорамировании камеры, автоматически выбирается новый базовый кадр. Для статических изображений коэффициент сжатия, естественно, ниже — порядка 20–30:1. Для аудиоданных применяют свои методы компрессии.

Существует симметричная и асимметричная схемы сжатия данных. При асимметричной схеме информация сжимается в автономном режиме (т.е. одна секунда исходного видео сжимается в течение нескольких секунд или даже минут мощными параллельными компьютерами и помещается на внешний носитель, например CD–ROM. На машинах пользователей устанавливаются сравнительно дешевые платы декодирования, обеспечивающие воспроизведение информации мультимедиа в реальном времени. Использование  такой схемы увеличивает коэффициент сжатия, улучшает качество изображения, однако пользователь лишен возможности разрабатывать собственные продукты мультимедиа. При симметричной схеме сжатие и развертка происходят в реальном времени на машине пользователя, благодаря чему за персональными компьютерами и в этом случае сохраняется их основополагающее достоинство: с их помощью любой пользователь имеет возможность производить собственную продукцию, в том числе и коммерческую, не выходя из дома. Правда, при симметричной схеме несколько падает качество изображения: появляются

 

Письменная экзаменационная работа

Лист

9

 

“смазанные” цвета, картинка как бы расфокусируется.

С развитием технологии эта проблема постепенно  уходит, однако пока иногда предпочитают смешанную схему, при которой разработчик продукта готовит, отлаживает и испытывает продукт мультимедиа на своей машине с симметричной схемой, а затем “полуфабрикат” в стандартном формате отсылается на фирму, где его подвергают сжатию на мощном компьютере, с использованием более совершенных алгоритмов и помещают результирующий продукт на CD–ROM.

В настоящее время целый ряд фирм активно ведет разработку алгоритмов сжатия видеоинформации, стремясь достичь коэффициента сжатия порядка 200:1 и выше. В основе наиболее эффективных алгоритмов лежат различные адаптивные варианты: DCT (Discrete Cosine Transform, дискретное косинус–преобразование), DPCM (Differential Pulse Code Modulation, разностная импульсно–кодовая модуляция), а также фрактальные методы. Алгоритмы реализуются аппаратно — в виде специальных микросхем, или “firmware” — записанной в ПЗУ программы, либо чисто программно.

Разностные алгоритмы сжатия применимы не только  к видео–изображениям, но и к компьютерной графике, что дает возможность применять на обычных персональных компьютерах новый для них вид анимации, а именно покадровую запись рисованных мультфильмов большой продолжительности. Эти мультфильмы могут хранится на диске, а при воспроизведении считываться, распаковываться и выдаваться на экран в реальном времени, обеспечивая те же необходимые для плавного изображения 25–30 кадров в секунду.

При использовании специальных видео–адаптеров (видеобластеров)  мультимедиа–ПК становятся центром бытовой видео–системы, конкурирующей с самым совершенным телевизором.

Новейшие видеоадаптеры имеют средства связи с источниками телевизионных сигналов и встроенные системы захвата кадра (компрессии / декомпрессии видеосигналов) в реальном масштабе времени, т.е. практически мгновенно. Видеоадаптеры имеют быструю видеопамять от 2 до 4 Мбайт и специальные графические ускорители процессоры. Это позволяет получать до 30–50 кадров в секунду и обеспечить вывод подвижных полноэкранных изображений.

 

Письменная экзаменационная работа

Лист

10

 

1.1.2. Аудио

Любой мультимедиа–ПК имеет в своем составе плату–аудиоадаптер. Для чего она нужна? С легкой руки фирмы Creative Labs  (Сингапур), назвавшей свои первые аудиоадаптеры звонким словом Sound Blaster, эти устройства часто именуются “саундбластерами”. Аудиоадаптер дал компьютеру не только стереофоническое звучание, но и возможность записи на внешние носители звуковых сигналов. Как уже было сказано ранее, дисковые накопители ПК совсем не подходят для записи обычных (аналоговых) звуковых сигналов, так как рассчитаны для записи только цифровых сигналов, которые практически не искажаются при их передаче по линиям связи.

Аудиоадаптер имеет аналого–цифровой преобразователь (АЦП), периодически определяющий уровень звукового сигнала и превращающий этот отсчет в цифровой код. Он и записывается на внешний носитель уже как цифровой сигнал.

Цифровые выборки реального звукового сигнала хранятся в памяти компьютера (например, в виде WAV–файлов). Считанный с диска цифровой сигнал подается на цифро–аналоговый преобразователь (ЦАП), который преобразует цифровые сигналы в аналоговые. После фильтрации их можно усилить и подать на акустические колонки для воспроизведения. Важными параметрами аудиоадаптера являются частота квантования звуковых сигналов и разрядность квантования.

Частоты квантования показывают, сколько раз в секунду берутся выборки сигнала для преобразования в цифровой код. Обычно они лежат в пределах от 4–5 КГц до 45–48 КГц.

Разрядность квантования характеризует число ступеней квантования и изменяется степенью числа 2. Так, 8–разрядные аудиоадаптеры имеют 28=256 степеней, что явно недостаточно для высококачественного кодирования звуковых сигналов. Поэтому сейчас применяются в основном 16-разрядные аудиоадаптеры, имеющие 216 =65536 ступеней квантования —  как у звукового компакт–диска.

 

 

Письменная экзаменационная работа

Лист

11

 

 

Таблица 1.

 

Частотный диапазон

Вид сигнала

Частота квантования

400 – 3500 Гц

Речь (едва разборчива)

5.5       КГц

250 – 5500 Гц

Речь (среднее качество)

11.025 КГц

40 – 10000 Гц

Качество звучания               УКВ–приемника

22.040 КГц

20 – 20000 Гц

Звук высокого качества

44.100 КГц

 

Другой способ воспроизведения звука заключается в его синтезе. При поступлении на синтезатор некоторой управляющей информации по ней формируется соответствующий выходной сигнал. Современные аудиоадаптеры синтезируют музыкальные звуки двумя способами: методом частотной модуляции FM (Frequency Modulation) и с помощью волнового синтеза (выбирая звуки из таблицы звуков, Wave Table). Второй способ обеспечивает более натуральное звучание.

Частотный синтез (FM) появился в 1974 году (PC–Speaker). В 1985 году появился AdLib, который, используя частотную модуляцию, был способен играть музыку. Новая звуковая карта SoundBlaster уже могла записывать и воспроизводить звук. Стандартный FM–синтез имеет средние звуковые характеристики, поэтому на картах устанавливаются сложные системы фильтров против возможных звуковых помех.

Суть технологии WT–синтеза состоит в следующем. На самой звуковой карте устанавливается модуль ПЗУ с “зашитыми” в него образцами звучания настоящих музыкальных инструментов — сэмплами, а WT–процессор с помощью специальных алгоритмов даже по одному тону инструмента воспроизводит все его остальные звуки. Кроме   того многие производители оснащают свои звуковые карты модуляторами ОЗУ, так что есть возможность не только записывать произвольные сэмплы, но и подгружать новые инструменты.

 

 

Письменная экзаменационная работа

Лист

12

 

 

например, MIDI (Musical Instruments Digital Interface) устройства. Собственно MIDI определяет протокол передачи команд по стандартному интерфейсу. MIDI–сообщение содержит ссылки на ноты, а не запись музыки как таковой. В частности, когда звуковая карта получает подобное сообщение, оно расшифровывается (какие ноты каких инструментов должны звучать) и отрабатывается на синтезаторе. В свою очередь компьютер может через MIDI управлять различными “интеллектуальными” музыкальными инструментами с соответствующим интерфейсом.

Для электронных синтезаторов обычно указывается число одновременно звучащих инструментов и их общее число (от 20 до 32). Также важна и программная совместимость аудиоадаптера с типовыми звуковыми платформами (SoundBlaster, Roland, AdLib, Microsoft Sound System, Gravis Ultrasound и др.).

В качестве примера рассмотрим состав узлов одного из мощных аудиоадаптеров — SoundBlaster AWE 32 Value. Он содержит два микрофонных малошумящих усилителя с автоматической регулировкой усиления для сигналов, поступающих от микрофона, два линейных усилителя для сигналов, поступающих с линии, с проигрывателя звуковых дисков или музыкального синтезатора. Кроме того, сюда входят программно–управляемый электронный микшер, обеспечивающий смешение сигналов от различных источников и регулировку их уровня и стереобаланса, 20-голосый синтезатор музыкальных звуков частотной модуляции FM, программно управляемый волновой (табличный) синтезатор музыкальных звуков и звуковых эффектов (16 каналов, 32 голоса, 128 инструментов), аналого–цифровой 16-разрядный преобразователь для превращения аналогового сигнала с выхода микшера в цифровой сигнал, систему сжатия цифровой информации с возможностью применения расширенного звукового процессора ASP. Наконец, аудиоадаптер имеет цифро–аналоговый преобразователь (ЦАП) для превращения цифровых сигналов, несущих информацию о звуке, в аналоговый сигнал, адаптивный электронный фильтр на выходе ЦАП, снижающий помехи от квантования сигнала, двухканальный усилитель мощности по 4 Вт на канал с ручным и программно–управляемым регулятором громкости и MIDI–разъем для подключения музыкальных инструментов.

 

 

Письменная экзаменационная работа

Лист

13

 

 

Как видно из этого перечня, аудиоадаптер — достаточно сложное техническое устройство, построенное на основе использования последних достижений в аналоговой и цифровой аудиотехнике.

В новейшие звуковые карты входит цифровой  сигнальный процессор DSP (Digital Signal Processor) или расширенный сигнальный процессор ASP (Advanced Signal Processor). Они используют совершенные алгоритмы для цифровой компрессии и декомпрессии звуковых сигналов, для расширения базы стереозвука, создания эха и обеспечения объемного (квадрофонического)  звучания. Программа поддержки ASP QSound поставляется бесплатно фирмой Intel на CD-ROM “Software Developer CD”. Важно отметить, что процессор ASP используется при обычных двухканальных стереофонических записи и воспроизведении звука. Его применение не загружает акустические тракты мультимедиа компьютеров.

2.       Носители информации

Важной проблемой мультимедиа является обеспечение адекватных средств доставки, распространения мультимедиа–информации. Носители должны вмещать огромные объемы разнородной информации, позволять быстрый доступ к отдельным ее компонентам, качественное их воспроизведение, и при этом быть достаточно дешевым, компактным и надежным. Эта проблема получила достойное решение лишь с появлением оптических дисков различных типов. В первых системах мультимедиа были использованы  аналоговые диски — их обычно называют “видеодисками”. Диаметр этих дисков 12 или 8 дюймов. Известны 12–дюймовые диски стандарта LV (Laser Vision), поддерживаемого Sony, Philips и Pioneer.

Информация записывается на лазерный диск по спирали, каждый виток этой спирали называется дорожкой. Существуют 2 способа записи информации на лазерные диски — CAV (Constant Angular Velocity, с постоянной  угловой скоростью) и CLV (Constant Linear Velocity, с постоянной линейной скоростью). При записи CLV диски вмещают по 1 часу видео на каждой из сторон (диски CLV называют также “долгоиграющими”), однако их интерактивные возможности ограничены, поэтому они в системах мультимедиа используются редко, чаще применяются при записи фильмов.

 

Письменная экзаменационная работа

Лист

14


Диск CAV вмещает на каждой дорожке один видеокадр (точнее, два полукадра, содержащие четные и нечетные строки кадра — телевизор работает в интерлейсном режиме, попеременно высвечивая четные и нечетные строки каждого кадра). Диск вращается с постоянной скоростью        30 об / с, обеспечивая необходимые для NTSC 30 кадров / с. Каждая из сторон диска имеет 54000 дорожек, т.е. вмещает 30 минут видео NTSC (диски для PAL — 37 минут). Каждый кадр имеет свой номер, или адрес, по номеру возможен прямой доступ к любому кадру. Кадры могут трактоваться как неподвижные изображения — для этого после завершения считывания дорожки устройство не переходит на следующую, а вновь считывает ту же самую); возможно также проигрывание с разными скоростями и в обратном направлении. Вместе с изображением записываются две звуковые дорожки, доступные, впрочем, только при просмотре кадров в режиме видео. Информацию на диске можно разбить на “части” — до 80 частей на каждой из сторон. Управляющая информация — номера кадров, номера частей — помещается в “бланковых” (невидимых) частях кадров.

Промежуточный, “аналого–цифровой” формат лазерных дисков — LVROM, или AIV (Advanced Interactive Video, улучшенное интерактивное видео) — позволяет сочетать на одном диске аналоговое видео с цифровым звуком и данными.

Наконец, существуют разные типы чисто цифровых дисков: CD–ROM, WORM, стираемые. CD–ROM, как и цифровые аудио–компакт–диски CDDA (Compact DiscDigital Audio) имеют диаметр 5.25 дюйма; они вмещают 500–600 Мбайт информации и являются сейчас наиболее массовым цифровым средством доставки мультимедиа–информации.

 

 

Письменная экзаменационная работа

Лист

15

 

 

Таблица 2.

Формат

Описание

CD–Audio  

Старейший формат компакт–дисков. Почти все дисководы CD–ROM могут проигрывать звуковые компакт–диски.

CD–Interactive

 

Собственный формат Philips для “интерактивных”, в основном, игровых компакт–дисков для домашних проигрывателей.

CD–ROM / XA 

Сочетает сжатые данные и звук, а так же смешанный режим, записываются с чередованием для более ровного воспроизведения. Лучший формат для мультимедиа.

Mixed mode 

Комбинация звука в формате Red Book и данных CD–ROM. Первая дорожка должна содержать данные, за ней могут следовать дорожки CD–Audio.

CD–Plus  

Сходен с режимом Mixed mode, отличие — предотвращение обращения звукового проигрывателя к дорожкам с данными во избежание повреждения дина

иков.

ISO–9660  

Стандартный формат и структура каталогов для CD–ROM.

HFS (Hierarhical File Structure) 

Формат данных, разработанный для Macintosh.

Hybrid discs 

Содержит системы HFS и ISO.

Photo CD  

Разработан фирмой Kodak для записи фотографий высокого качества. Для воспроизведения необходимо устройство CD–ROM / XA или CD–Interactive.

Video CD  

Видеоинформация в формате MPEG–1 и звук. Стандарт предназначен для воспроизведения фильмов.

 

 

Письменная экзаменационная работа

Лист

16

 

 

CD–ROM диск — кружок из прозрачной пластмассы, поликарбоната, на одной из поверхностей которого нанесен тонкий светоотражающий слой. Этот серебристый слой хорошо виден с тыльной стороны прозрачного диска. В нем имеются микроскопические углубления — питы, созданные в процессе его копирования с оригинала.

Типичная длина пита 0.8 – 3.2 мкм, ширина 0.4 мкм, глубина 0.12 мкм, а расстояние между отдельными дорожками 1.6 мкм. На одном дюйме (2.54 см) поверхности диска размещается 16 тыс. дорожек (для сравнения — на одном дюйме магнитного диска помещается только 96 дорожек). Благодаря столь малым размерам питов обычный CD–ROM вмещает огромный объем информации — порядка 700 Мбайт. Новые типы дисков имеют на порядок больший объем и допускают запись информации пользователем.

Рабочей является только одна поверхность диска CD–ROM. Она защищена толстым слоем лака, на который обычно наносится красочная этикетка. В проигрывателе диск обращен этой стороной наружу. Противоположная (тыльная) сторона используется для считывания лазерным лучом. Луч проходит сквозь нее, так как основа диска — прозрачная пластмасса. Толщина диска 1.2 мм, внешний диаметр 120 мм, диаметр внутреннего отверстия 15 мм.

В проигрывателе имеется электродвигатель со следящей систе, мой, обеспечивающей точное считывание дорожки лазерным лучом и неизменную линейную скорость считывания. Поэтому скорость вращения диска непостоянна и изменяется от 500 об. / мин. для внутренней части диска, с которой начинается считывание, до 200 об. / мин. для внешней. Специальный оптико–электронный блок имеет устройства для стабилизации излучения лазера, автоматической фокусировки, слежения за дорожкой при биении диска и выбора треков диска для считывания.

Для считывания информации с CD–ROM используется полупроводниковый диод с фокусирующей и следящей оптической системой. Внутренняя поверхность диска, на которую кладут диск на подставку (в кассету) дисковода, находится не в фокусе оптической системы лазерного излучателя. Диаметр светового пятна от лазера, создающего сходящийся конус света, порядка 1 мм. Поэтому умеренные загрязнения

 

Письменная экзаменационная работа

Лист

17

 

 

 нерабочей поверхности, например, пылинки на ней, отпечатки пальцев и даже небольшие царапины практически не влияют на воспроизведение. В отличие от привычных жестких магнитных дисков, диски CD–ROM можно заменять в считанные секунды. А ведь один диск CD–ROM по емкости равен примерно 500–м обычным гибким дискам формата 3.5“ на 1.44 Мбайт. Экономия на дискетах является немаловажным достоинством мультимедиа.

Проигрыватели (со компьютерных компакт–дисков, обычно называемые CD–ROM–драйвами, бывают двух типов: внешние своим корпусом) и внутренние — встраиваемые в системный блок компьютера. Последние напоминают накопители на гибких магнитных 5.25–дюймовых дискетах и имеют одинаковые с ним размеры.

На передней панели дисковода CD–ROM обычно имеется кнопка Eject для выброса или плавного выдвижения поддона, индикатор Busy (занято), гнездо для подключения стереотелефонов и регулятор громкости, используемый при проигрывании звуковых дисков.

Полноценное “вооружение” мультимедиа–ПК требует подключения к нему множества внешних устройств: аудио– и видеоадаптеров, телевизионных и радио–тюнеров, дисководов CD–ROM, джойстиков, клавиатуры MIDI и т.д. Все они обслуживаются массой программных утилит — драйверов и нередко конфликтуют друг с другом. В этой связи крупные разработчики ПК объединили усилия в создании стандарта Plug and Play (включай и играй). Этот стандарт — обширный комплекс программных и аппаратных средств по полностью автоматической настройке конфигурации компьютера в соответствии с используемым с ним оборудованием.

Технология PnP (или Plug’n’Play) предполагает, что достаточно включить компьютер, как все аппаратные и программные средства автоматически оптимально настроятся и станут работать без сбоев и конфликтов.

2.1. Аппаратные средства мультимедиа.

Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналого-цифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду,

 

Письменная экзаменационная работа

Лист

18

 

 

воспроизводимому электронно-лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров  и так далее. Все оборудования, отвечающие за звук объединяются в так называемые звуковые карты, а за видео в видео карты.

2.1.1.             Звуковые карты.

Для звуковых карт IBM совместимых компьютеров прослеживаются следующие тенденции:

1. Для воспроизведения звука вместо частотной модуляции (FM) теперь всё больше используют табличный (wavetable) или WTсинтез, сигнал полученный таким образом, более похож на звук реальных инструментов, чем при FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальные, то есть восстановить их полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты. Фирмы производители звуковых карт добавляют WTсинтез двумя способами: встраивают на звуковую карту в виде микросхем, либо реализуют в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.

2. Совместимость звуковых карт. За сравнительнуо не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначены для игр и развлечений, поддерживают совместимость с Adlib и Sound Blaster. Все звуковые карты, ориентированные на бизнес – приложения, совместимы обычно с MS Windows Sound Sistem фирмы Microsoft.

3. Совместные звуковые карты оснащены таким компонентом, как сигнальный процессор DSP (Digital Signal Processor). Распознание речи, трёхмерное звучание, WTсинтез, сжатие и декомпрессия аудиосигналов – всё это входит в сферу действия данного устройства. Тем не менее, не столь велико количество звуковых карт, оснащённых DSP. Причиной этому является то, что такое достаточно мощное

 

Письменная экзаменационная работа

Лист

19

 

 

 устройство может быть использовано только при решении строго определённых задач. На сегодняшний день один из самых известных производителей мощных DSP является фирма Texas Instruments. Стоит отметить, что в силу своей дороговизны DSP устройство устанавливается исключительно на профессиональных музыкальных картах.

4. Основной проблемой встроенных устройств обработки звука является ограниченность системных ресурсов IBM PC совместимых компьютеров. Потенциально корень проблемы кроется в возможности конфликтов по каналам прямого доступа к памяти (DMA). Примером плат со встроенным звуком можно представить системную плату OPTi 495 SLC, в которой используется 16 – разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES.

5. Фирмы производители, стремясь к более естественному воспроизведению звука, используют технологии объёмного или трёхмерного звучания. Объёмность звучания в наши дни представляет собой самое модное направление в области воспроизведения звука. Последнее придаёт большую глубину ограниченного поля воспроизведения, которое присуще небольшим, находящимся на близком расстоянии колонкам.

6. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM. В основном используются приводы трёх фирм – SONY, PANASONIC и Mitsumi. Также появились карты и приводы, которые поддерживают стандартный интерфейс ATA (IDE). Последний используется для компьютеров с винчестером.

7. Использование на картах режима Dual DMA, что означает двойной, прямой доступ к памяти. Реализовать одновременно запись и воспроизведение можно с помощью двух каналов  DMA.

 8. Происходит устойчивое внедрение звуковых технологий в телекоммуникации. В 90% случаев звуковые карты приобретаются для игр. В оставшемся – для речевого сопровождения программ мультимедиа. В этом случае потребительские качества зависят от цифро-аналогового преобразователя и от усилителя звуковой частоты. Не менее важным представляется совместимость со стандартом Sound Blaster. Далеко не все программы способны обеспечить поддержку

 

Письменная экзаменационная работа

Лист

20

 

 

 менее распространённых стандартов.

Наборы звуковых карт, как правило, состоят из драйвера, утилиты, программы записи и воспроизведения звука, а также средства для подготовки и произведения презентаций, энциклопедий, игр.

2.1.2. Видеокарты.

На IBM PC совместимых компьютерах, для работы с видеосигналами, используется огромное количество устройств. Эти устройства можно классифицировать следующим образом: MPEG – плееры устройства для ввода и захвата видеопоследовательностей (Cupture play), фреймграбберы (Framegrabbfer),TV – тюнеры, преобразователи сигналовVGA TV.

MPEG – плееры. В функции данных устройств входит воспроизведение фильмов, записанных на компакт – дисках, качеством VNS при скорости потока сжатой информации, не превышающей обычно 150 Кбайт/с. Определение для каждого конкретного видеопотока оптимального соотношения между тремя видами изображения: Intra, Preicted и Bidirectional можно считать основной сложностью задачи, решаемой MPEG кодером. Плата Reel Magic была первым MPEG – плеером. Созданием её в 1993 году явилась компания Sigina Desing.

Появившиеся около шести лет назад, эти устройства, объединяют графические, аналогово-цифровые и микросхемы для обработки видеосигналов. Фрейм грабберы позволяют дискретизировать видеосигнал, сохраняя при этом отдельные кадры изображения в буфере с последующей записью на диск. Также они способны выводить их и непосредственно в окно на мониторе компьютера. Содержимое буфера обновляется с частотой смены кадров примерно каждые 40 мс. Вывод видеосигналов происходит в режиме наложения (overbi). Карта фреймграббера соединена с графическим адаптером через 26 контактный Feature коннектор с целью вывода на экране монитора окна с «живым» видео. С ним обычно поставляется пакет Video fjr Windows, в функции которого входит вывод картинки размером 240*160 пикселов при воспроизведении 256 цветов и больше. Первые устройства подобного рода – Video Blaster Video Spigot.

 

 

Письменная экзаменационная работа

Лист

21

 

 

TV тюнеры. По своему внешнему виду эти устройства напоминают карту или бокс (небольшую коробочку). Они выполняют задачу преобразования аналогового видеосигнала, который поступает по сети кабельного телевидения или от антенны, видеомагнитофона или камкодера (camcoder). TV – тюнеры могут входить в состав таких устройств, как MPEG – плееры или фреймграбберы.

Некоторые из них содержат встроенные микросхемы для преобразователя звука. Ряд тюнеров выполняют функцию вывода телетекста.

2.1.3. Преобразователи VGA-TV.

Основной задачей преобразователей является трансляция сигнала в цифровом образе VGA изображения в аналоговый сигнал, пригодный для ввода на телевизионный приёмник. Как правило, производителям предлагаются подобные устройства, выполненные в одном из двух вариантов: либо как внутренние ISA карта либо как внешний блок.

Примером использования преобразователей может служить наложение видеосигналов при создании титров. В этом случае осуществляется полная синхронизация преобразованного компьютерного сигнала. При наложении формируется специальный ключевой (key) сигнал трёх видов: lumakey, chromakey, alpha chenol.

1. При формировании сигнала lumakey наложение производится там, где яркость Y превышает заданного уровня.

2. В случае с chromakey накладывание изображения прозрачно только там, где его цвет совпадает с заданным.

3. Альфа канал (alpha chenol) используют в профессиональном оборудовании, которое основано на формировании специального сигнала с простым распределением, определяющим степень смещения видеоизображения в различных точках.

 

 

Письменная экзаменационная работа

Лист

22


3. Техника безопасности и организация рабочего места
оператора ЭВМ

3.1. Рабочее место оператора ЭВМ

Под организацией рабочего места оператора ЭВМ понимается размещение его постоянного рабочего места с учетом психофизиологических, антропометрических данных, обеспечение безопасных условий работы, а также рациональная планировка оборудования и помещения.

Рабочее место оператора должно обеспечивать: удобную рабочую позу, точность движений, соответствие санитарно-гигиеническим требованиям. Основой рабочего места оператора является пульт с органами управления и индикаторными панелями. Особенности его технологического решения определяются спецификой работы оператора. Основным требованием при размещении индикаторных, регистрирующих элементов и органов управления является облегчение сбора информации и ее переработки человеком. Учитывается, что моторное поле (поле движений) разделяется на максимальные, минимальные, нормальные и оптимальные рабочие зоны операторов, работающих в горизонтальной и вертикальных плоскостях при работе сидя и стоя (рис. 3.1, а, б). В горизонтальной плоскости поле делится на зону основных движений оператора с легкой доступностью и хорошим обзором (оптимальное рабочее пространство) и зону вспомогательных движений (максимальное рабочее пространство). Оптимальное рабочее пространство ограничено дугами, описываемыми каждой рукой оператора при вращении в локтевом суставе - зона I (рис. 3.2). Максимальное рабочее пространство ограничено дугами, описываемыми вытянутыми руками с поворотом в плечевом суставе (зона II). Органы управления располагают так, чтобы по возможности свести рабочие движения к движениям предплечья, пальцев кисти руки, исключить движения плечевого сустава, перекрестную работу рук, равномерно распределить работу между правой и левой рукой, с учетом того фактора, что правой рукой выполняются наиболее ответственные операции, требующие наибольшей силы и точности.

 

 

 

Письменная экзаменационная работа

Лист

23

 

Рис. 3.1. - Оптимальная конструкция пульта управления:

а - при работе сидя; б - при работе стоя

Часто используемые органы управления располагаются в оптимальном рабочем пространстве. Аварийные и ответственные органы управления располагаются в оптимальной зоне досягаемости руки, второстепенные органы управления - в зоне максимальной досягаемости руки. Клавиши, кнопки располагаются в порядке, совпадающем с естественной последовательностью выполнения рабочих операций. Цвет клавишей и кнопок выбирают контрастным по отношению к цвету панели. Тумблеры размещают так, чтобы между ними было достаточно свободного места при расположении ручек друг к другу. Установка горизонтальными рядами предпочтительна. Направление движений тумблеров, рычагов, рукояток должно быть согласно с изменениями регулируемых параметров или с привычными представлениями оператора:

  • движение их «от себя», «вверх», «вправо» вызывает «включение», «пуск», «увеличение значения параметра»;
  • движение рукояток, тумблеров «к себе», «вниз», «влево» вызывает «выключение», «остановку», «уменьшение параметров»;
  • нажатие верхних передних и правых кнопок вызывает «включение», «пуск», «увеличение».

 

 

Письменная экзаменационная работа

Лист

24

 

Рис. 3.2. - Распределение рабочих зон в горизонтальной плоскости:

I - зона основных движений; II - зона вспомогательных движений; III - зона вне пределов досягаемости, но в пределах видимости приборов

 

Наиболее важные индикаторные элементы исходя из анализа деятельности оператора располагаются в центре на уровне глаз оператора или несколько ниже. Целесообразно выполнять группировку индикаторных элементов, передающих информацию об одном объекте, либо связанных общей задачей по функциональному назначению. Группирование может выполняться разделением приборов определенными промежутками, выделением групп различной окраской, заключением групп в рамки и т.д.

Показания должны читаться слева направо. Надписи к элементам выполняют краткими, ясными и размещают горизонтально.

Плоскость поверхности, где располагаются индикаторы, перпендикулярна линии взора, что достигаются наклоном рабочих панелей (рис. 3.1).

Микроклимат в помещении пункта управления должен благоприятствовать работе персонала. Рекомендуется температура воздуха 18-24 °С, влажность от 30 до 80 %, скорость движения воздуха - не более одного метра в секунду.

3.2. Мероприятия по оптимизации рабочих мест

С целью улучшения условий труда, снижения нагрузок на опорно-двигательный аппарат и уменьшения влияния излучений ЭВМ на организм пользователей ЭВМ (ПК) необходимо:

 

Письменная экзаменационная работа

Лист

25

– располагать рабочие места с ПК таким образом, чтобы естественный свет падал сбоку (с левой или с правой стороны) в зависимости от расположения столов, оборудования и оконных проемов;

– не допускать расположения рабочих мест с ПК в подвальных помещениях;

– площадь одного рабочего места с ЭВМ должна составлять не менее 6,0 кв.м, а объем не менее 20,0 куб.м.

Не рекомендуется располагать рабочие места, оснащенные ПЭВМ (ПК), друг за другом. Задняя стенка монитора ПК не должна быть направлена (или соприкасаться) на пользователя ПК. Расстояние от стен не менее 1 м.

Рабочее место пользователя ПЭВМ (ПК) включает: рабочий стол, стул (кресло).

Меры по улучшению условий освещения и зрительной работоспособности пользователей ПЭВМ (ПК) включают: – улучшение световой обстановки путем обеспечения помещений естественным и достаточным искусственным освещением, рациональным расположением рабочих мест по отношению к оконным проемам и светильникам искусственного освещения;

– снижение зрительного утомления путем снижения пульсации светового потока, исключения бликов отражения на экранах мониторов, использования экранов защиты, фильтров с антибликовым покрытием, очков для пользователей ПЭВМ и рационального использования режимов труда и отдыха.

3.3. Мероприятия по улучшению состояния рабочих помещений

Мероприятия по улучшению состояния воздушной среды рабочих помещений с ПК включают:

- применение вентиляции и кондиционирования воздуха;

- уменьшение тепловыделений от мониторов ПК;

- применение ионизаторов;

- использование специальных увлажнителей, комнатных растений;

- влажную ежедневную уборку помещений.

Рациональный режим труда и отдыха – это правильное чередование работы и перерывов в ней в течение смены, суток, недели, года, устанавливаемое с целью обеспечения высокой производительности труда и сохранения здоровья работающих.

 

Письменная экзаменационная работа

Лист

26

Рациональный режим труда и отдыха предусматривает строгое соблюдение перерывов, активное их проведение, регламентацию суммарного и непрерывного времени работы за дисплеем, равномерное распределение заданий.

Мероприятия по снижению шума

 В помещениях с ЭВМ (ПК), где уровень шума превышает допустимые значения, для его устранения должны проводиться организационные, строительно-акустические и другие мероприятия

Мероприятия по снижению интенсивности электромагнитных излучений и постоянных электрических и магнитных полей

Мероприятия по снижению излучений включают:

- мероприятия по сертификации ПЭВМ (ПК) и аттестации рабочих мест;

- применение экранов и фильтров;

- организационно-технические мероприятия;

- применение средств индивидуальной защиты путем экранирования пользователя ПЭВМ (ПК) целиком или отдельных зон его тела;

- использование и применение профилактических напитков;

- использование иных технических средств защиты от патогенных излучений.

3.4. Организация рабочего места и стандарты безопасности

Специалисты различных направлений и специализаций после тщательных исследований пришли к выводу, что причиной отклонений здоровья пользователей являются не столько сами компьютеры, сколько недостаточно строгое соблюдение принципов эргономики. Ученые озабочены тем, чтобы появление и активное применение компьютерных технологий не стало дополнительным фактором ухудшения здоровья. Для этого необходимо, чтобы рабочее место отвечало бы гигиеническим требованиям безопасности.

На рисунке представлена система взаимодействия человека, машины и окружающей пользователя среды.

 

 

Письменная экзаменационная работа

Лист

27

 

 

Рисунок. Система взаимодействия человека, машины и окружающей среды.

Исходя из этой системы взаимодействия, сформулируем основные требования к организации рабочих мест и рабочего процесса, которые помогут уменьшить воздействие вредных факторов от ПК.

В помещениях, где используются компьютеры, формируются специфические условия окружающей среды - микроклимата. При низких значениях влажности в воздухе накапливаются микрочастицы с высоким электростатическим зарядом, способные адсорбировать частицы пыли и поэтому обладающие аллергизирующими свойствами. Для поддержания нормальной тем­пературы и относительной влажности в помещении необходимо регулярное проветривание, а так же наличие систем ионизирования и кондиционирования воздуха. Для улучшения микроклимата так же важна грамотная организация освещения.

Специалисты рекомендуют применять преимущественно люминесцентные лампы. Их располагают в виде сплошных или прерывистых линий, расположенных сбоку от рабочих мест, параллельно линии мониторов. При периметральном расположении компьютеров светильники располагают локализовано над рабочим местом ближе к переднему краю, обращенному к пользователю. Существуют специальные люминесцентные лампы, которые излучают свет различного качества, имитируя, таким образом, полный спектр естественного солнечного света.

Другая, не менее серьезная проблема – обеспечение электромагнитной

 

Письменная экзаменационная работа

Лист

28

безопасности работающих за компьютером с дополнительными периферийными устройствами. При одновременном их включении вокруг пользователя создается поле с широким частотным спектром. В этом случае немаловажную роль играет оборудование рабочего места в помещении. Однако на практике обеспечить нормальную электромагнитную обстановку удается далеко не всегда.

Специалисты предлагают принять во внимание следующее: помещение, где эксплуатируются компьютеры и периферия к ним, должно быть удалено от посторонних источников электромагнитных излучений (электрощиты, трансформаторы и т.д.); если на окнах помещения имеются металлические решетки, то они должны быть заземлены, т.к. несоблюдение этого правила может привести к резкому локальному повышению уровня полей в какой-либо точке помещения и сбоям в работе компьютера; Групповые рабочие места желательно размещать на нижних этажах здания, так как вследствие минимального значения сопротивления заземления именно на нижних этажах здания существенно снижается общий электромагнитный фон.

При неверной общей планировке помещения, неоптимальной разводке питающей сети, неэффективном устройстве контура заземления собственный электромагнитный фон помещения может оказаться настолько сильным, что обеспечить на рабочих местах требования санитарных правил в большинстве случаев невозможно.

Особое внимание следует уделять организации групповых рабочих мест, так как в этом случае пользователь подвержен излучению не только своего компьютера, но и тех, которые расположены рядом с ним. Каждое рабочее место создает своеобразное магнитное поле, радиус которого может быть 1,5 м и более, причем излучение исходит не только от экрана, но и от задней и боковых стенок монитора. Специалисты советуют размещать рабочие места с компьютерами так, чтобы расстояние между боковыми стенками дисплея соседних мониторов было не менее 1,2 м, а расстояние между передней поверхностью монитора в направлении тыла соседнего монитора – не менее 2 м. Такая планировка рабочих мест способствует защите пользователя от электромагнитных излучений соседних компьютеров.

 

Письменная экзаменационная работа

Лист

29

Технический уровень современных мониторов не позволяет полностью исключить существование вредных воздействий. Однако это воздействие необходимо минимизировать, регламентировав ряд параметров, для чего и были разработаны и выпущены санитарные нормы. Выделяют две основные группы стандартов и рекомендаций – по безопасности и эргономике. К первой группе относятся стандарты UL, СЕ, FCC Class В. Представителями второй группы являются ТСО, MPR-II, ISO 9241-3.

 

 

Письменная экзаменационная работа

Лист

30

 


Заключение

Несомненным достоинством и особенностью технологии являются следующие возможности мультимедиа, которые активно используются в представлении информации:

  • возможность увеличения (детализации) на экране изображения или его наиболее интересных фрагментов, иногда в двадцатикратном увеличении (режим "лупа") при сохранении качества изображения. Это особенно важно для презентации произведений искусства и уникальных исторических документов;
  • возможность сравнения изображения и обработки его разнообразными программными средствами с научно-исследовательскими или познавательными целями;
  • возможность выделения в сопровождающем изображение текстовом или другом визуальном материале "горячих слов", по которым осуществляется немедленное получение справочной или любой другой пояснительной (в том числе визуальной) информации (технологии гипертекста и гипермедиа);
  • возможность осуществления непрерывного музыкального или любого другого аудиосопровождения, соответствующего статичному или динамичному визуальному ряду;
  • возможность использования видеофрагментов из фильмов, видеозаписей и т.д., функции "стоп-кадра", покадрового "пролистывания" видеозаписи;
  • возможность автоматического просмотра всего содержания продукта ("слайд-шоу") или создания анимированного и озвученного "путеводителя-гида" по продукту ("говорящей и показывающей инструкции пользователя"); включение в состав продукта игровых компонентов с информационными составляющими;
  • возможность "свободной" навигации по информации и выхода в основное меню (укрупненное содержание), на полное оглавление или вовсе из программы в любой точке продукта.

 

 

 

 

 

Письменная экзаменационная работа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Стадия

Лист

Листов

Преподаватель

Фамилия

Подпись

Дата

У

31

32

 

 

 

 

ГОУ СПО ПК №47 им. В.Г.Федорова

Гр. №

Обучающийся

Фамилия

Подпись

Дата

 

 

 

 

 

Список литературы

1. Экономическая информатика. Учебник под редакцией В. П. Косарева и Л. В. Ерёмина – М: Финансы и статистика, 2002 г., 592 стр.

2. Автоматизированные информационные технологии в экономике. Учебник под редакцией профессора Г. А. Титоренко – М: Юнити, 2001 г., 399 стр.

3. Концепции современного естествознания. 2 – е издание. М: Издательский центр «Академия», 2006 г., 496 стр.

4. Информационные технологии в экономике и управлении. А. А. Козырев, учебник 2 – е издание: СПб изд. Михайлова В. А., 2001 г., 360 стр.

5. С. Новосельцев “Мультимедиа — синтез трех стихий”. Компьютер–Пресс, 7’91.

6. В. Дьяконов “Мультимедиа–ПК”. Домашний Компьютер, 1’96.

7. Звуковые платы” — по материалам зарубежной прессы, Copmuter Review, 7’96

 

 

 

 

 

Письменная экзаменационная работа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

Стадия

Лист

Листов

Преподаватель

Фамилия

Подпись

Дата

У

32

32

 

 

 

 

ГОУ СПО ПК №47 им. В.Г.Федорова

Гр. №

Обучающийся

Фамилия

Подпись

Дата

 

 

 

 

 

 

Новости

ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2021 ГОДА. Уже 14 статей приняты.
Журнал №3 (Vol. 79) вышел в свет 25 марта 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 марта 2021 ГОДА. Уже 24 статьи приняты.
Журнал №2 (Vol. 78) вышел в свет 25 февраля 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2021 ГОДА. Уже 43 статьи приняты.
Журнал №1 (Vol. 77) вышел в свет 25 января 2021 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 января 2021 ГОДА. Уже 31 статья приняты.
Журнал №12 (Vol. 76) вышел в свет 25 декабря 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2020 ГОДА. Уже 62 статьи приняты.
Журнал №11 (Vol. 75) вышел в свет 25 ноября 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ноября 2020 ГОДА. Уже 76 статей приняты.
Журнал №10 (Vol. 74) вышел в свет 25 октября 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2020 ГОДА. Уже 29 статей приняты.
Журнал №9 (Vol. 73) вышел в свет 25 сентября 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2020 ГОДА. Уже 26 статей приняты.
Журнал №8 (Vol. 72) вышел в свет 25 августа 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2020 ГОДА. Уже 33 статьи приняты.
Журнал №7 (Vol. 71) вышел в свет 25 июля 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2020 ГОДА. Уже 39 статей приняты.
Журнал №6 (Vol. 70) вышел в свет 25 июня 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июня 2020 ГОДА. Уже 38 статей приняты.
Журнал №5 (Vol. 69) вышел в свет 25 мая 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 мая 2020 ГОДА. Уже 60 статей приняты.
Журнал №4 (Vol. 68) вышел в свет 25 апреля 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2020 ГОДА. Уже 43 статьи приняты.
Журнал №3 (Vol. 67) вышел в свет 25 марта 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 марта 2020 ГОДА. Уже 44 статьи приняты.
Журнал №2 (Vol. 66) вышел в свет 25 февраля 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2020 ГОДА. Уже 54 статьи приняты.
Журнал №1 (Vol. 65) вышел в свет 25 января 2020 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 января 2020 ГОДА. Уже 34 статьи приняты.
Журнал №16 (Vol. 64) вышел в свет 25 декабря 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2019 ГОДА. Уже 88 статей приняты.
Журнал №14 (Vol. 63) вышел в свет 25 ноября 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ноября 2019 ГОДА. Уже 51 статья приняты.
Журнал №14 (Vol. 62) вышел в свет 25 октября 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2019 ГОДА. Уже 47 статей приняты.
Журнал №13 (Vol. 61) вышел в свет 25 сентября 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2019 ГОДА. Уже 24 статьи приняты.
Журнал №12 (Vol. 60) вышел в свет 25 августа 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2019 ГОДА. Уже 17 статей приняты.
Журнал №11 (Vol. 59) вышел в свет 25 июля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2019 ГОДА. Уже 22 статьи приняты.
Журнал №10 (Vol. 58) вышел в свет 2 июля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 2 июля 2019 ГОДА. Уже 36 статей приняты.
Журнал №9 (Vol. 57) вышел в свет 10 июня 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 10 июня 2019 ГОДА. Уже 43 статьи приняты.
Журнал №8 (Vol. 56) вышел в свет 20 мая 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 20 мая 2019 ГОДА. Уже 34 статьи приняты.
Журнал №7 (Vol. 55) вышел в свет 1 мая 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 1 мая 2019 ГОДА. Уже 22 статьи приняты.
Журнал №6 (Vol. 54) вышел в свет 15 апреля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 15 апреля 2019 ГОДА. Уже 34 статьи приняты.
Журнал №5 (Vol. 53) вышел в свет 1 апреля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 1 апреля 2019 ГОДА. Статьи принимаются до 31 марта. Уже 85 статей приняты.
Журнал №4 (Vol. 52) вышел в свет 15 марта 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 15 марта 2019 ГОДА. Уже 100 статей приняты.
Журнал №3 (Vol. 51) вышел в свет 1 марта 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 1 марта 2019 ГОДА. Уже 114 статей приняты.
Журнал №2 (Vol. 50) вышел в свет 10 февраля 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 10 февраля 2019 ГОДА. Уже 99 статей приняты.
Журнал №1 (Vol. 49) вышел в свет 20 января 2019 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 20 января 2019 ГОДА. Уже 98 статей приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 декабря 2018 ГОДА. Уже 102 статьи приняты.
Журнал №12 (Vol. 47) вышел в свет 3 декабря 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 3 декабря 2018 ГОДА. Уже 87 статей приняты.
Журнал №11 (Vol. 46) вышел в свет 10 ноября 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 10 ноября 2018 ГОДА. Уже 84 статьи приняты.
Журнал №10 (Vol. 45) вышел в свет 25 октября 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 октября 2018 ГОДА. Уже 84 статьи приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 сентября 2018 ГОДА. Уже 75 статей приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 августа 2018 ГОДА. Уже 78 статей приняты.
Журнал №7 (Vol. 42) вышел в свет 25 июля 2018 года.
Электронная версия 6 выпуска (2018) журнала загружена на сайт научной электронной библиотеки eLIBRARY.RU
https://elibrary.ru/contents.asp?titleid=48986.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июля 2018 ГОДА. Уже 54 статьи приняты.
Журнал №6 (Vol. 41) вышел в свет 25 июня 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 июня 2018 ГОДА. Уже 47 статей приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 мая 2018 ГОДА. Уже 22 статьи приняты.
Журнал №4 (Vol. 39) вышел в свет 25 апреля 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2018 ГОДА. Уже19 статей приняты.
В ближайшие дни журнал №3 (Vol. 38) будет размещен на сайте eLIBRARY.RU - крупнейшей в России электронной библиотеки научных публикаций. Библиотека интегрирована с Российским индексом научного цитирования (РИНЦ).
Журнал №3 (Vol. 38) вышел в свет 30 марта 2018 года.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 апреля 2018 ГОДА. Уже 2 статьи приняты.
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 30 марта 2018 ГОДА. Уже 14статей приняты.
Журнал №2 (Vol. 37) вышел в свет 25 февраля 2018 года
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 февраля 2018 ГОДА. Уже 3 статьи приняты.
Журнал №1 (Vol. 36) вышел в свет 25 января 2018 года
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 25 ЯНВАРЯ 2018 ГОДА. Уже 15 статей приняты.
Журнал №6 (Vol. 35) вышел в свет 20 декабря 2017 года
ПРИНИМАЮТСЯ СТАТЬИ ДЛЯ ОЧЕРЕДНОГО ВЫПУСКА ЖУРНАЛА, КОТОРЫЙ ВЫЙДЕТ 20 ДЕКАБРЯ 2017 ГОДА. Уже 26 статей приняты.
Журнал №5 (Vol. 34) вышел в свет 20 ноября 2017 года
СЛЕДУЮЩИЙ ВЫПУСК 20 НОЯБРЯ 2017 ГОДА. Уже 18 статей
Журнал №4 (Vol. 33) вышел в свет 30 сентября 2017 года
Журнал №3 (Vol. 32) вышел в свет 28 июля 2017 года
Журнал №2 (Vol. 31) вышел в свет 25 мая 2017 года
Журнал №1 (Vol. 30) вышел в свет 30 марта 2017 года
Журнал №6 вышел в свет 30 декабря 2016 года
Журнал №5 вышел в свет 28 октября 2016 года
Журнал №4 вышел в свет 17.08.16.
Тираж 1000 экз.
Журнал №3 (2016) Vol. 26
подписан 06.06.16.
Тираж 1000 экз.
Журнал №2 (2016) Vol. 25
подписан 24.04.16.
Тираж 1000 экз.
Набираем статьи для 2-го выпуска журнала в 2016 году.
Журнал №1 (2016) Vol. 24
подписан 25.02.16.
Тираж 1000 экз.
Набираем статьи для 1-го выпуска 2016 года.
Журнал №6 (Vol. 23) 2015 года подписан в печать 11.12.16
Тираж 1000 экз.
Набираем статьи для 6-го выпуска журнала.
Выпуск выйдет 15 января 2016 года
Журнал №5 (Vol. 22) 2015 года подписан в печать 24.11.15
Тираж 1000 экз.
Вышел в печать 5 выпуск журнала
Вниманию авторов: Продолжается набор статей для 5-го выпуска журнала.
Журнал №4 (Vol. 21) 2015 года подписан в печать 18.09.15
Тираж 1000 экз.
Журнал №3 (Vol. 20) 2015 года подписан в печать 08.07.15
Тираж 1000 экз.
Журнал №2 (Vol. 19) 2015 года подписан в печать 01.05.15
Тираж 1000 экз.
Журнал №1 (Vol. 18) 2015 года подписан в печать 17.03.15
Тираж 1000 экз.
Журнал №8 (Vol. 17) 2104 года подписан в печать 28.12.14.
Тираж 1000 экз.
Журнал №7 (Vol.16) подписан в печать 24.11.14. Тираж 1000 экз.
Журнал №6 подписан 28.08.14.
Тираж 1000 экз.
Журнал №5 подписан 22.05.14.
Тираж 1000 экз.
Журнал №4 подписан 20.03.14.
Тираж 1000 экз.
Журнал №3 подписан 12.02.14.
Тираж 1000 экз.
Журнал №2 подписан 10.01.14.
Тираж 1000 экз.
Журнал №1 подписан 05.11.13.
Тираж 1000 экз.
Журнал №3 (Vol. 38) вышел в свет 30 марта 2018 года.В ближайшие дни этот журнал будет размещен на сайте eLIBRARY.RU - крупнейшей в России электронной библиотеки научных публикаций. Библиотека интегрирована с Российским индексом научного цитирования (РИНЦ).
Индексируется в: